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Abstract

This paper deals with the solution of time-dependent problems. The multiquadric radial basis function
method is formulated, with a new approach for transient problems. One- and two-dimensional problems
are considered. The forward difference and the Crank–Nicolson time-marching schemes for parabolic cases
are considered. The central difference integration method of the Newmark family is considered for
hyperbolic problems. The method proves its accuracy in four numerical examples.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Time-dependent problems are of considerable relevance in engineering and science. This paper
deals with the solution of time-dependent problems with radial basis functions. The multiquadric
radial basis function method is formulated, with a new approach for transient problems. One-
(1D) and two-dimensional (2D) problems are considered. The method proves its accuracy in some
numerical 1D and 2D examples.
In this paper, a recent meshless approximation technique is used, based on radial basis

functions (RBFs). This truly meshless technique is insensitive to spatial dimension, and considers
see front matter r 2004 Elsevier Ltd. All rights reserved.
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only a cloud of nodes (centers) for the spatial discretization of both the problem domain and
the boundary.
Other meshless methods have also been proposed. They may be classified as smooth particle

hydrodynamics [1–3], diffuse element method [4], element free Galerkin [5–7], reproducing kernel
particle method [8–13] and HP clouds [14]. In recent years, Liu’s group gave significant
contributions, namely the local point interpolation method (LPIM) and the local radial point
interpolation method (LR-PIM) [15,16], the radial point interpolation method (RPIM) [17] and
the boundary radial point interpolation method (BRPIM) [18].
The radial basis function method was first used by Hardy [19,20] for the interpolation

of geographical scattered data, and later used by Kansa [21,22] for the solution of partial
differential equations (PDEs). Many other radial basis functions can be used as reviewed in the
recent book of Liu [23], namely Powell [24], Coleman [25], Sharan et al. [26], Wendland [27],
among others.
The use of RBFs for 2-D solids has been proposed by Liu et al. [28–30] and by Ferreira [31,32]

for composite plates and beams. The method has also been applied to other engineering problems
such as in Refs. [33–35].
This paper concentrates on the solutions of 1D and 2D engineering problems, such as heat

conduction and beams in bending, using both the forward difference and Crank–Nicolson time-
marching schemes with interpolation by the unsymmetrical multiquadric method.
2. The multiquadric method

The multiquadric method relies on the Euclidian distance between nodes and in some cases on a
shape parameter (c), user-defined and object of various discussions. The influence of such
parameters not only defines the RBF, but may also provide ill-conditioned problems with
inadequate solutions.
The numerical solution of PDEs is traditionally dominated by finite element methods, finite

volume methods or finite difference methods. All of these methods are based on local
interpolation strategies and depend on a mesh for local approximation. In these methods,
although the function is continuous across meshes, its partial derivatives are not [36–38].
A new approach for solving partial differential equations is based on RBFs. An RBF

depends only on the distance to a center point xj and is of the form gðkx� xjkÞ: The RBF may
also depend on a shape parameter c, in which case gðkx� xjkÞ is replaced by gðkx� xjk; cÞ
[21,22,39–42].
Consider a set of nodes x1; x2; . . . ;xN 2 O � Rn: The radial basis functions centered at xj are

defined as

gjðxÞ � gðkx� xjkÞ 2 Rn; j ¼ 1; . . . ;N; (1)

where kx� xjk is the Euclidian norm.
Some of the most common RBFs are [21,22,39–41]:

Multiquadrics : gjðxÞ ¼ ðkx� xjk þ c2Þ1=2; (2)
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Inverse Multiquadrics : gjðxÞ ¼ ðkx� xjk þ c2Þ�1=2; (3)

Gaussians : gjðxÞ ¼ e�c2kx�xjk
2

; (4)

Thin Plate Splines : gjðxÞ ¼ kx� xjk
2 log kx� xjk; (5)

where c is a shape (user-defined) parameter. In this paper, only the multiquadric method is used.
RBFs are insensitive to spatial dimension, making the implementation of this method much

easier than, e.g., finite elements [21,22].
Time-dependent problems have been treated with multiquadrics since their reappearance due to

Kansa in 1990 [21,22]. Kansa applied his nonsymmetric multiquadric method to solve two
parabolic and hyperbolic PDEs [22], the linear advection–diffusion equation and the dynamic 1D
von Neumann blast wave. To solve the first problem, the author used a standard implicit
approximation scheme; as for the second equation, a fourth-order Runge–Kutta scheme is used to
perform the integration in time.
Another interesting approach to solve the 1D parabolic problem using RBFs came from

Fasshauer [43], who made use of the Newton method and Nash iteration with an explicit time-
stepping method to interpolate the classical Heat Equation.
Further incursions on the fluid dynamics domain have been made by authors like Hon and

Wong [34]. They used the RBF meshless method to solve a multilayer computational model for
simulating 3D tidal flows in coastal waters [44]. In this paper, the authors also prove the
applicability of the RBF method in the solution of large-scale systems using a domain
decomposition technique. They continued the exploration of hydrodynamic problems using RBF-
based techniques, solving the Shallow water equations [34]. A different base of interpolating
functions was used, the compactly supported RBFs or CSRBFs, which according to these authors
allow application of RBF interpolation schemes in large-scale problems. Although simple, the
forward differences scheme allowed authors to obtain an excellent match between experimental
and observational data.
Multiquadrics are dependent only on space coordinates. This characteristic imposes the use of

mixed algorithms to treat time-dependent problems. From Newton iteration to the forward
differences scheme, it is possible to combine a wide variety of time-dependent solvers with the
basic RBF spatial treatment, used for example in an homogeneous Poisson equation.
In this paper, it is proposed to use Kansa’s unsymmetric collocation method [21,22]. For the

purpose of completeness, a brief explanation of the method follows.
Consider a boundary-valued problem with a domain O � Rn and a linear elliptic partial

differential equation of the form

LuðxÞ ¼ sðxÞ � Rn; (6)

BuðxÞj@O ¼ f ðxÞ 2 Rn; (7)

where @O represents the boundary of the problem. We use points along the boundary ðxj; j ¼
1; . . . ;NBÞ and in the interior ðxj; j ¼ NB þ 1; . . . ;NÞ:
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Let the RBF interpolant to the solution uðxÞ be

sðx; cÞ ¼
XN

j¼1

fjgðkx� xjk; cÞ: (8)

Collocation with the boundary data at the boundary points and with PDE at the interior points
leads to equations

sBðx; cÞ �
XN

j¼1

fj Bgðkx� xjk; cÞ ¼ lðxiÞ; i ¼ 1; . . . ;NB; (9)

sLðx; cÞ �
XN

j¼1

fj Lgðkx� xjk; cÞ ¼ FðxiÞ; i ¼ NB þ 1; . . . ;N; (10)

where lðxiÞ; FðxiÞ are the prescribed values at the boundary nodes and the function values at the
interior nodes, respectively.
This corresponds to a system of equations with an unsymmetric coefficient matrix, structured in

matrix form as

Bf

Lf

� �
½a� ¼

l

U

� �
: (11)

It has been shown that the unsymmetric coefficient matrix can become ill-conditioned or
singular [40].
The use of globally supported RBFs for large problems can bring problems due to the full

populated matrices. To solve this drawback, a localization scheme is advisable. Domain
decomposition methods [39,45] and localization of the basis functions [39,46] claim to be able to
deal with tens of thousands of nodes.
The present model does not issue such methods, as for problems dealt with in the paper the

number of nodes to provide good quality solutions is usually small. For large applications
involving analysis of plates and shells, such refined approaches are certainly needed.
3. Solving time-dependent problems

Consider the following general time-dependent problem:

@u

@t
þ Lu ¼ f ðxÞ; x 2 O; (12)

where O is a domain in Rd ; d ¼ 1; 2; . . . ; n with boundary @O and L is some differential operator.
We approximate u by eu and assume

euðt;xÞ ¼XN

j¼1

ajðtÞfðkx � xjk; cÞ; (13)
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where xj are N distinct data points in O; and aj’s are unknown coefficients to be determined at
each time step.
The derivative of the approximating solution on time is

@eu
@t

¼
XN

j¼1

daj

dt
fðkx � xjk; cÞ: (14)

Spatial derivatives are obtained as

@eu
@x

¼
XN

j¼1

aj
@f
@x

fðkx � xjk; cÞ; (15)

@2eu
@x2

¼
XN

j¼1

aj
@2f
@x2

fðkx � xjk; cÞ    (16)

Substituting Eqs. (13)–(16) into Eq. (12) and collocating at N points xi; gives

@euðxiÞ

@t
þ LeuðxiÞ ¼ f ðxiÞ; (17)

which can be expressed as

U_aþ ULa ¼ f; (18)

where a is the vector of unknown coefficients ðajÞ; f is the vector f ðxiÞ and the matrices U and UL

are given by U ¼ fðkx � xjk; cÞ and UL ¼ Lfðkx � xjk; cÞ; respectively.
Eq. (18) can be expressed as

_a ¼ �U�1ULaþ U�1f: (19)

This is a typical system of first-order linear differential equations. With a time difference scheme
applied to Eq. (19), the unknown coefficients a can be determined at each time step t if and only if
the coefficient matrix U is solvable.
To illustrate this problem more clearly, the first-order time difference scheme is applied to Eq.

(18) obtaining

Uanþ1 ¼ Uan � DtULaþ Dtf: (20)

At each time step, n, the right-hand term of Eq. (19) is known, so Eq. (19) is similar to Ua ¼ f;
the typical interpolation problem.
The following algorithm for time-dependent problems can now be formulated as
1.
 Initialize at time t :¼ 0; approximate the initial condition using Eq. (13) and then compute the
partial differential operator L ¼ Lðu0; ux; uxx; . . .Þ:
2.
 Solve Eq. (19) with some time-marching scheme to obtain coefficients a and then compute the
solution u using Eq. (13) and the operator L at time t :¼ t:
3.
 Correct the boundary values using boundary conditions.

4.
 Put t :¼ t þ Dt and go to Step 2.
In the present paper, the Crank–Nicolson scheme was also used for parabolic problems.
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In this case, the algorithm is established as follows. Consider a parabolic case. In the
Crank–Nicolson formulation, the following two expressions hold for function and first derivative:

utþDt=2 ¼ 1
2 ðu

t þ utþDtÞ; (21)

_utþDt=2 ¼
utþDt � ut

Dt
: (22)

When applying this scheme, the following equation is obtained:

utþ1 ¼ ut þ
Dt

2

du

dt

� �tþ1

þ
du

dt

� �t
 !

(23)

or

utþ1 �
Dt

2

du

dt

� �tþ1

¼ ut þ
Dt

2

du

dt

� �t

: (24)

The multiquadrics interpolation results in

Uanþ1 �
Dt

2
ULa

nþ1 ¼ Uan þ
Dt

2
ULa

n: (25)

The remaining procedure follows the same scheme as in the forward difference approach.
The central difference integration method of the Newmark family was used for hyperbolic

problems, such as beams in bending. The algorithm for this case follows a similar radial basis
interpolation approach as in the parabolic formulations.
4. Examples and discussion

4.1. 1D heat-conduction problem

Consider a 1D heat-conduction problem, with equation

@u

@t
�

@2u

@x2
¼ 0; 0oxo1

with boundary conditions

uð0; tÞ ¼ 0;
@u

@x
ð1; tÞ ¼ 0

and initial condition uðx; 0Þ ¼ 1:0: The problem is solved for time 0ptp1; using Dt ¼ 0:05: The
grid used for this example is a regular grid as shown in Fig. 1.
As can be seen from Fig. 2 and Table 1, results obtained from the present methodology are in

excellent agreement with exact results. Results are less adequate for Np5:
Fig. 1. Regular grid used for heat-conduction problem; � — boundary nodes; � — interior nodes.
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Table 1

1D heat-conduction problem—a comparison of the present model (N ¼ 5; 10 and 15) with the exact solution and finite
element solution of Reddy [47, p. 236]

Time t Reddy [47] Exact solution N ¼ 5 N ¼ 10 N ¼ 15

0.00 1.0000 1.0000 1.1103 1.0000 1.0000

0.10 0.9549 0.9493 0.9607 0.9520 0.9502

0.20 0.7731 0.7723 0.7541 0.7749 0.7726

0.30 0.6006 0.6068 0.5786 0.6097 0.6069

0.40 0.4741 0.4745 0.4430 0.4775 0.4746

0.50 0.3701 0.3708 0.3392 0.3738 0.3709

0.60 0.2890 0.2897 0.2596 0.2926 0.2898

0.70 0.2258 0.2264 0.1987 0.2290 0.2265

0.80 0.1764 0.1769 0.1522 0.1793 0.1769

0.90 0.1378 0.1382 0.1165 0.1403 0.1383

1.00 0.1076 0.1080 0.0892 0.1098 0.1081

Fig. 2. 1D heat equation results; , N=5; ——, N=10; , N=15.
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4.2. Transverse motion of Bernoulli and Timoshenko beams

Consider the transverse motion of an isotropic beam, clamped at both ends, according to the
Euler–Bernoulli beam theory, with equation

@2w

@t2
�

@4w

@x4
¼ 0; 0oxo1;
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with boundary conditions

wð0; tÞ ¼ 0;
@w

@x
ð0; tÞ ¼ 0; wð1; tÞ ¼ 0;

@w

@x
ð1; tÞ ¼ 0

and initial condition

wðx; 0Þ ¼ sin px � pxð1� xÞ;
@w

@t
ðx; 0Þ ¼ 0:

The problem is solved for time 0ptp0:15 using Dt ¼ 0:005 and the present solution compared
with a finite element solution by Reddy [47], using four beam elements and a Galerkin solution.
The grid for Bernoulli beams is illustrated in Fig. 3.
The present model presents results in excellent agreement with the exact solution and with the

finite element results of Reddy [47]. The agreement improves, as expected, with the increase of grid
points, as seen in Table 2 and Fig. 4. The modelling of the Euler–Bernoulli beam needs the
consideration of the following boundary conditions, imposed upon the transverse deflection (w)
and x-direction bending moment (Mx):

ðaÞ w ¼ 0 in x ¼ 0 and x ¼ LðG1Þ;

ðbÞ Mx ¼ 0 in G2:
Fig. 3. Irregular grids for Euler–Bernoulli beams, Neumann conditions imposed; � — w ¼ 0 condition (G1); % —

Mx ¼ 0 condition (G2); � — interior nodes.

Table 2

Transient Bernoulli beam—a comparison of the present model (N ¼ 9; 11 and 15) with the exact (Galerkin) solution
and finite element solution of Reddy [47, p. 240]

Time t Reddy [47] Exact solution N ¼ 9 N ¼ 11 N ¼ 15

0.00 0.2146 0.2146 0.2146 0.2146 0.2146

0.01 0.2098 0.2157 0.2106 0.2095 0.2089

0.02 0.1951 0.1988 0.2005 0.2001 0.1985

0.03 0.1698 0.1716 0.1655 0.1674 0.1691

0.04 0.1350 0.1356 0.1186 0.1252 0.1304

0.05 0.0935 0.0925 0.0654 0.0738 0.0818

0.06 0.0483 0.0447 0.0214 0.0306 0.0384

0.07 0.0018 �0.0055 �0.0292 �0.0189 �0.0107

0.08 �0.0455 �0.0553 �0.0830 �0.0693 �0.0586

0.09 �0.0923 �0.1023 �0.1397 �0.1245 �0.1111

0.10 �0.1336 �0.1441 �0.1760 �0.1644 �0.1520

0.11 �0.1682 �0.1783 �0.1986 �0.1917 �0.1834

0.12 �0.1932 �0.2034 �0.2091 �0.2048 �0.1996

0.13 �0.2087 �0.2179 �0.2202 �0.2172 �0.2136

0.14 �0.2148 �0.2211 �0.2144 �0.2171 �0.2164

0.15 �0.2111 �0.2129 �0.1904 �0.2022 �0.2094
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Fig. 4. Bernoulli beam results; *, Reddy [41]; , Exact; , N=9; , N=11; , N=15.
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Due to the collocation strategy, it is necessary to impose the boundary condition defined in (b) in
a near point: Mx ¼ 0 in x ¼ 0þ d; x ¼ L � dðG2), where d is a very small number. This type of
boundary condition produces significant improvement over boundary conditions imposed on
regular grids (Fig. 3).
Another method for dealing with superposition of boundary conditions was proposed by Wu

and his colleagues [48–54].
The evolution of the transverse displacement with time for larger times is illustrated in Fig. 5. It

can be seen that a very regular pattern is obtained without divergence of the solution. It is now
considered the same beam problem, but with a Timoshenko formulation with h ¼ 0:01 and 0.1.
The governing equations of the Timoshenko beam with cross section A are given by

rA
@2w

@t2
�

@

@x
GAk

@w

@x
þ f

� �� �
¼ 0; (26)

rI
@2f
@t2

�
@

@x
EI

@f
@x

� �
þ GAk

@w

@x
þ f

� �
¼ 0; (27)

where G is the shear modulus, K is the shear correction coefficient, r is the material density and I

the inertia moment.
In order to present a similar simulation as in the case of the Euler–Bernoulli beam, consider

EI ¼ 1:0; rA ¼ 1:0:
In Fig. 6 and Table 3, results are presented and compared with a Galerkin formulation and

finite element results of Reddy [47]. Again, Dt ¼ 0:005 is used as in Reddy’s book, with central
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Fig. 5. Evolution of displacement with time.

Fig. 6. Timoshenko beam results. , Reddy [41]; , Galerkin;   �   , h=0.01, N=7; +  , h=0.01, N=9;  3  ,

h=0.01, N=11; , h=0.1, N=7; , h=0.1, N=9; -3-, h=0.1, N=11.
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difference (Newmark) scheme. Results with h ¼ 0:01 or 0.1 agree quite well with both
formulations. The grid used in this case is similar to the one illustrated in Fig. 1.
In general, the methodology presents quite good results.
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Table 3

Transient Timoshenko beam—a comparison of the present model (N ¼ 7; 9 and 11) with the exact solution and finite
element solution of Reddy [47, p. 240]

Time t Reddy [47] Galerkin h ¼ 0:01 h ¼ 0:1

N ¼ 7 N ¼ 9 N ¼ 11 N ¼ 7 N ¼ 9 N ¼ 11

0.00 0.2146 0.2146 0.2146 0.2146 0.2146 0.2146 0.2146 0.2146

0.01 0.2098 0.2157 0.2185 0.2113 0.2096 0.2080 0.2077 0.2079

0.02 0.1951 0.1988 0.1922 0.1972 0.1974 0.1887 0.1883 0.1875

0.03 0.1698 0.1716 0.1436 0.1659 0.1684 0.1622 0.1636 0.1652

0.04 0.1350 0.1356 0.1070 0.1207 0.1294 0.1347 0.1375 0.1379

0.05 0.0935 0.0925 0.0440 0.0723 0.0824 0.1028 0.1059 0.1064

0.06 0.0483 0.0447 0.0236 0.0258 0.0379 0.0620 0.0663 0.0682

0.07 0.0018 �0.0055 �0.0699 �0.0235 �0.0102 0.0140 0.0202 0.0217

0.08 �0.0455 �0.0553 �0.1323 �0.0784 �0.0590 �0.0358 �0.0301 �0.0293

0.09 �0.0923 �0.1023 �0.1792 �0.1304 �0.1103 �0.0815 �0.0754 �0.0726

0.10 �0.1336 �0.1441 �0.1981 �0.1684 �0.1515 �0.1185 �0.1093 �0.1061

0.11 �0.1682 �0.1783 �0.2297 �0.1919 �0.1826 �0.1472 �0.1402 �0.1399

0.12 �0.1932 �0.2034 �0.2224 �0.2086 �0.2006 �0.1735 �0.1693 �0.1666

0.13 �0.2087 �0.2179 �0.1952 �0.2202 �0.2141 �0.1979 �0.1934 �0.1922

0.14 �0.2148 �0.2211 �0.1744 �0.2169 �0.2169 �0.2129 �0.2108 �0.2118

0.15 �0.2111 �0.2129 �0.1242 �0.1923 �0.2079 �0.2142 �0.2161 �0.2157
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4.3. 2D Poisson problem

Consider the 2D Poisson transient problem, with equation

@T

@t
� r2T ¼ 1; in O ¼ fðx; yÞ: 0oðx; yÞo1g;

with boundary conditions

T ¼ 0 on G1 ¼ fLines x ¼ 1 and y ¼ 1g; tX0;

@T

@n
¼ 0 on G2 ¼ fLines x ¼ 0 and y ¼ 0g; tX0

and initial condition

T ¼ 0; in O:

The square grid used in this example is shown in Fig. 7. The problem is solved for time
0ptp1:0: In Table 4 and Fig. 8, the present method is compared with the finite element results of
Reddy [55] and shows high accuracy.
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Fig. 7. Grid for 2D problems.

Table 4

Transient 2D Poisson—a comparison of the present model (N ¼ 5; 9 and 17) with the exact solution and finite element
solution of Reddy [55, p. 240]

Time t Formulation Temperature along the y ¼ 0 line ðTðx; 0; tÞ � 10Þ

x ¼ 0:0 x ¼ 0:25 x ¼ 0:50 x ¼ 0:75

Reddy [55] (R2) 0.9945 0.9853 0.9264 0.6360

0.1 5� 5 grid 1.0580 1.0182 0.9195 0.6451

9� 9 grid 0.9872 0.9673 0.8822 0.6258

17� 17 grid 0.9841 0.9718 0.9020 0.6323

Reddy [55] (R2) 1.8115 1.7329 1.4997 0.9612

0.2 5� 5 grid 1.8272 1.7395 1.4881 0.9607

9� 9 grid 1.7376 1.6699 1.4365 0.9347

17� 17 grid 1.7257 1.6597 1.4275 0.9274

Reddy [55] (R2) 2.2479 2.1432 1.8018 1.1319

0.3 5� 5 grid 2.3058 2.1845 1.8309 1.1147

9� 9 grid 2.2117 2.1090 1.7742 1.1183

17� 17 grid 2.1998 2.0982 1.7644 1.1102

Reddy [55] (R2) 2.9621 2.8037 2.3065 1.4053

1.0 5� 5 grid 3.0131 2.8413 2.3352 1.4187

9� 9 grid 2.9308 2.7740 2.2836 1.3941

17� 17 grid 2.9237 2.7672 2.2767 1.3878

A.J.M. Ferreira et al. / Journal of Sound and Vibration 280 (2005) 595–610606
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Fig. 8. 2D Poisson results.
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5. Conclusions

In this paper, the multiquadric radial basis function method was applied to the analysis of some
time-dependent problems. A one- and two-dimensional conduction and a beam in bending were
analyzed. Euler–Bernoulli and Timoshenko formulations were used for the transient analysis of
isotropic beams. Results were compared with existing solutions showing excellent performance.
Results showed that the use of unsymmetric colocation strategy gives very good agreement with

available theories or previous results for all cases.
This method, based on radial basis functions has very large potential for the solution of

structural problems, as a real meshless method, insensible to spatial dimension.
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